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Abstract

The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family

of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score

distributions. While the classical equipercentile, or percentile-rank, equating method carries out

the continuization step by linear interpolation, in principle the kernel equating methods could use

various kernel smoothings to replace the discrete score distributions.

This paper expands the work of von Davier et al. (2004) in investigating alternative kernels for

equating practice. To examine the influence of different kernel functions on the equating results,

this paper focuses on two types of kernel functions: the logistic kernel and the continuous uniform

distribution (known to be the same as the linear interpolation). The Gaussian kernel is used for

reference. By employing an equivalent-groups design, the results of the study indicate that the tail

properties of kernel functions have great impact on the continuized score distributions. However,

the equated scores based on different kernel functions do not vary much, except for extreme scores.

The results presented in this paper not only support the previous findings on the efficiency and

accuracy of the existing continuization methods, but also enrich the information on observed-score

equating models.

Key words: Kernel equating, gaussian kernel, logistic kernel, uniform kernel, cumulants,

equivalent-groups design
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Introduction

The need for test equating arises when there are two or more test forms that measure the

same construct and that can yield different scores for the same examinee. The most common

example involves multiple forms of a test within a testing program, as opposed to a single testing

instrument. In a testing program, different test forms that are similar in content and format

typically contain completely different test questions. Consequently, the tests can vary in difficulty

depending on the degree of control available in the test development process. Examinees tested

with the more difficult test form will receive lower scores than they would had they been tested

with the easier form. Because testing programs often require comparability of the scores produced

on these different forms, test-equating techniques were developed to adjust for these differences in

test difficulty across test forms.

The goal of test equating is to allow the scores on different forms of the same test to be

used and interpreted interchangeably. Test equating requires some type of control for differential

examinee ability, or proficiency, in the assessment of, and adjustment for, differential test difficulty;

the differences in abilities are controlled by employing an appropriate data collection design.

Many observed-score equating methods are based on the equipercentile equating function,

which requires that the initial discrete score distribution functions have been continuized. Several

important observed-score equating methods may be viewed as differing only in the way the

continuization is achieved. The traditional equipercentile equating method (percentile-rank

method) uses linear interpolation of the discrete distribution to make it piecewise linear and

therefore continuous. The kernel equating (KE; von Davier, Holland, & Thayer, 2004) method

uses Gaussian kernel smoothing to approximate the discrete histogram by a continuous density

function.

Von Davier et al. (2004) introduced not only a continuization method for discrete score

distributions but also a conceptual framework for the equating process. In this framework, five

consecutive steps for manipulation of the raw data are developed in such a way that each step

explicitly contributes to the equated scores and their accuracy. The five steps are (a) presmoothing

of the discrete score distributions using loglinear models (Holland & Thayer, 2000); (b) estimating

the marginal discrete score distributions by applying the design function, a mapping that reflects

the data collection design; (c) continuization of the distributions; (d) computing the equating

function and diagnosing it; and (e) computing several accuracy measures, such as the standard
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error of equating (SEE) and the standard error of equating difference (SEED).

This paper expands the work of von Davier et al. (2004) by also looking at kernel functions

other than the Gaussian kernel. Adopting the KE framework of von Davier et al. (2004), we will

apply or adapt each of the five steps to incorporate the alternative kernels, the logistic kernel and

the uniform kernel, along with the Gaussian kernel (GK).

The GK is the kernel function in common use, but it may not result in the best continuous

approximation of the observed discrete score distribution in terms of cumulants due to the fact

that the normal distribution has zero cumulants of orders higher than 2. The logistic kernel may

work better in this regard since its cumulants are not all zero for orders higher than 2 (see Method

section). The uniform kernel, on the other hand, is known to lead to the linear interpolation

process adopted in the percentile-rank method. Thus, how it performs compared to the GK and

the logistic kernel is of interest.

The rest of this section introduces basic notation. Two test forms are to be equated, X and Y,

and a target population, T, on which this is to be done. The corresponding possible scores on T

are X and Y, respectively. The data are collected in such a way that the differences in the difficulty

of the test forms and the differences in the ability of the test-takers that take the two forms are not

confounded. Two classes of data collection designs are used for equating: (a) designs that allow

for common people (equivalent-groups, single-group, and counterbalanced designs) from a single

target population of examinees T (see Livingston, 2004, for a slightly different view and definition

of a target population); and (b) designs that allow for common items (the nonequivalent groups

with an anchor test, or NEAT, design, also referred to as the common-item or anchor-test design)

where the tests, X and Y, are given to two samples from two test populations (administrations),

P and Q, respectively, and a set of common items (the anchor test) is given to samples from both

these populations. As the name implies, in a NEAT design the samples from P and Q are not

assumed to be of equivalent ability. The target population, T , for the NEAT design is assumed

to be a weighted average of P and Q where P and Q are given weights that sum to 1. This is

denoted by T = wP + (1− w)Q.

The equipercentile equating function is defined on the target population, T, as

eY ;T (x) = G−1
T (FT (x)), where FT (x) and GT (y) are the cumulative distribution functions

(CDFs), of X and Y, respectively, on T. In order for this definition to make sense and to

insure that the inverse equating function exists, it is also assumed that FT (x) and GT (y) are
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strictly increasing and have been made continuous (or continuized). Equipercentile equating

leads to linear equating if one assumes that FT (x) and GT (y) are continuous and have the

same shape while differing in mean and variance. The linear equating function is defined by

LinY ;T (x) = µY T + σY T ((x − µXT )/σXT ), where µXT , µY T , σXT and σY T are the means and

standard deviations of X and Y on T, respectively.

This study will examine the effect of applying different kernel functions when using the

equivalent-groups (EG) design. Equating that makes use of these kernel functions can be done

with any of the other designs, such as the counterbalanced design and the NEAT design, with

only slight modifications.

The next section describes the five-step process for kernel equating with a generic kernel

function. Then, a detailed description is provided of the continuous distributions (including the

cumulants) that are obtained through use of the newly investigated kernels (logistic and uniform).

The subsequent section describes the results obtained by applying the kernel functions to the EG

data given in Chapter 7 of von Davier et al. (2004). The last section of the paper discusses the

results and draws conclusions.

Method

Suppose the two tests, X and Y, have J and K possible raw-score values. Denote these

possible scores of X and Y by X = {x1, . . . , xJ} and Y = {y1, . . . , yK}, respectively. In the

case of concern, assume x1, . . . , xJ to be consecutive integers; similarly for y1, . . . , yK . As Braun

and Holland (1982) emphasized, observed-score test equating always takes place on a specific

population of examinees. We assume that this population is fixed and let r = {rj} and s = {sk}
denote the score probabilities for this population, rj = P (X = xj) and sk = P (Y = yk). The

CDFs of the score distributions for X and Y are

F (x) = P(X ≤ x) =
∑

j: xj≤x

rj and (1)

G(y) = P(Y ≤ y) =
∑

k: yk≤y

sk. (2)

However, r and s are unobservable population parameters. In reality, the raw data obtained

from an EG design are two sets of univariate frequencies {nj} and {mk}, where nj= number of

examinees in sample one with X = xj and mk= number of examinees in sample two with Y = yk,
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with sample sizes N =
∑

j nj and M =
∑

k mk, respectively. As a result, the presmoothing step

has to be carried out beforehand to estimate the population score probabilities r and s.

Presmoothing

In the EG design, the score distributions X and Y are independent. As in Holland and

Thayer (2000) and von Davier et al. (2004), a separate loglinear model is fitted to each univariate

distribution using sample proportions as probabilities and design matrices (i.e., power moments

of the scores) as covariates. The moments preserved in the loglinear models are Tr and Ts for r

and s, respectively. The score probabilities r and s are estimated by their maximum likelihood

estimates (MLEs), r̂ and ŝ, respectively.

Let Σr̂ and Σŝ denote the covariance matrices of r̂ and ŝ, respectively. Holland and Thayer

(1987) proved that, for MLEs r̂ and ŝ, there exists a J × Tr matrix Cr and a K × Ts matrix Cs

such that

Σr̂ = CrC
T
r and Σŝ = CsC

T
s , (3)

where T stands for the transpose of the matrix. The matrices Cr and Cs are called C-matrices

(von Davier et al., 2004). The C-matrices are one of the key components in evaluating the

standard error of equating (SEE) and the standard error of equating difference (SEED) of the

equating functions, under the assumption that the loglinear models hold.

Continuization

The KE method is based on a flexible family of equipercentile-like equating functions. One

score x on test X is said to be equivalent to one score y on test Y if x and y are at the same

percentile in the population. If both score distributions X and Y were continuous, the equating

function eY (x) would have the form

eY (x) = G−1(F (x)). (4)

To apply Equation 4 when X and Y are discrete, continuous approximations of them can be

found with means (and variances) remaining the same as their discrete alternatives. In the KE

framework, this can be achieved by adding a continuous and independent random variable to both

X and Y and by taking certain linear transformations afterwards. In the classical equipercentile

method, continuization is achieved by linear interpolation, and only the means of the discrete

distributions are preserved.
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The kernel functions are the densities of the added continuous random variable. Consider

X(hX) as a continuous transformation of X such that

X(hX) = aX(X + hXV ) + (1− aX)µX , (5)

where

a2
X =

σ2
X

σ2
X + σ2

V h2
X

(6)

and hX is the bandwidth controlling the degree of smoothness. In this equation, V is a continuous

(kernel) distribution. When hX is large, the distribution of X(hX) approximates the distribution

of V approximately; when hX is small, X(hX) approaches X. In von Davier et al. (2004),

V follows a standard normal distribution. In the exposition below, V is a generic continuous

distribution.

It is easy to verify that E(X(hX)) = µX and Var(X(hX)) = σ2
X . Similarly, the continuous

approximation of Y is defined as

Y (hY ) = aY (Y + hY V ) + (1− aY )µY , (7)

where

a2
Y =

σ2
Y

σ2
Y + σ2

V h2
Y

, (8)

and hY is the bandwidth.

In the next theorem, we illustrate a few limiting properties of X(hX) and a2
X that indicate

their behavior as hX takes on different values. This theorem represents a generalization of

Theorem 4.1 in von Davier et al. (2004) to other kernel functions.

Theorem 1. The following statements hold:

(a) lim
hX→0

aX = 1;

(b) lim
hX→∞

aX = 0;

(c) lim
hX→∞

hXaX = σX/σV ;

(d) lim
hX→0

X(hX) = X; and

(e) lim
hX→∞

X(hX) = (σX/σV )V + µX .

The next theorem shows the asymptotic form of the CDF when h varies. If h is small then

the CDF of the continuized distribution will closely track the original discrete distribution, and
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if h is large the CDF will approximate the distribution of the kernel, preserving the mean and

variance of the original distribution.

Theorem 2. Let

RjX(x) =
x− aXxj − (1− aX)µX

aXhX
. (9)

It has the following approximate form when hX → 0 and when hX →∞:

(a) RjX(x) =
x− xj

hx
+ o(hX) as hX → 0, and

(b) RjX(x) =
x− µX

σX/σV
−

(
σX

σV hX

)
·
(

x− µX

σX/σV

)
+ o(

σX

σV hX
) as hX →∞.

As mentioned before, it has been argued that the GK may not result in the best continuous

approximation of the observed discrete score distribution in terms of cumulants due to the fact that

the normal distribution has zero cumulants of orders higher than 2. This will be investigated in

the rest of this section, where the use of the logistic kernel and of the uniform kernel are separated

into two cases. Their properties of cumulants will be discussed, and their corresponding density

functions of X(hX) and the penalty functions for the selection of bandwidths will be defined

explicitly. At the end of this section, one way to examine the continuized score distributions will

also be provided.

Case 1: Logistic Kernel Function

Suppose V is a logistic random variable and is independent of X and Y . Its probability

density function (PDF) has the form:

h(v) =
exp{−v/s}

s(1 + exp{−v/s})2 , (10)

and its CDF is given by

H(v) =
1

1 + exp{−v/s} , (11)

where s is the scale parameter. V has zero mean and variance σ2
V = π2s2/3. Varying the scale

parameter would expand or shrink the distribution. If s = 1, the distribution is called the standard

logistic (SL), whose variance is π2/3. We can rescale the distribution so that it has zero mean

and identity variance, which can be accomplished by setting s =
√

3/π. It is called the rescaled

logistic (RL) in this paper. (From now on, SLK stands for the cases where SL is used as the kernel
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function, and RLK stands for those with RL kernel function. Without specification, LK will

represent the logistic kernel in general.)

The next two theorems are generalizations of Theorems 4.2 and 4.3 of von Davier et al. (2004)

to the logistic kernel. The CDF and PDF of X(hX) in Theorem 3 demonstrate that the LK

function actually serves as a smoother on the discrete score distribution and that the degree of

smoothness depends on the choice of bandwidth hX .

Theorem 3. If X(hX) is defined in Equation 5, its CDF is given by

FhX
(x) =

∑

j

rjH(RjX(x)) (12)

with RjX(x) defined in Equation 9. The function FhX
(x) is the continuous approximation of F (x),

the CDF of X. In addition, the corresponding PDF is

fhX
(x) =

1
aXhX

∑

j

rjh(RjX(x)). (13)

One way to see how close the continuized CDFs are to the discrete CDFs is to compute

the cumulants of FhX
(x) and GhY

(y) and compare them with the cumulants of F (x) and G(y),

respectively. The jth cumulant of X(hX), κj(hX), is defined by the coefficient of (t)j/j! in the

cumulant-generating function g(t),

g(t) = log(E(exp[tX(hX)])) =
∞∑

j=1

κj(hX)tj

j!
(14)

(Abramowitz & Stegun, 1972). Let g(j)(·) denote the jth derivative of g(·). It is well known that

κ1(hX) = µX = g(1)(0) and κ2(hX) = σ2
X = g(2)(0), the mean and variance of X(hX), respectively.

In general, κj(hX) = g(j)(0). Two useful properties of cumulants are stated in the following.

Properties. Let κj,V denote the jth cumulant of V . For any constant c,

1. κ1,V +c = c + κ1,V but κj,V +c = κj,V for j ≥ 2; and

2. κj,cV = cj · κj,V for j ≥ 1.

Let κj,X denote the jth cumulant of X. Holland and Thayer (1989) noted that, if GK is

applied in the continuization step,

κj(hX) = (aX)jκj,X for j ≥ 3. (15)
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The cumulants before and after continuization have a concise relationship due to the fact that a

normal distribution has zero cumulants of orders higher than 2.

The heavier tails and sharper peak of a logistic distribution lead to larger cumulants of even

orders than do those of a normal distribution. Apparently, the above relationship will no longer

hold if LK is used. Suppose V is a logistic random variable with mean zero and variance π2/3

(i.e., the case of SLK). For |t| < 1 the moment-generating function of V is given by

MV (t) = E(etV ) =
∫ ∞

−∞
etv · e−v

(1 + e−v)2
dv

=
∫ 1

0
ξ−t(1− ξ)t dξ

= B(1− t, 1 + t)

= Γ(1− t) · Γ(1 + t),

where ξ = (1 + ev)−1, B(·, ·) is the beta function, and Γ(·) is the gamma function (Balakrishnan,

1992). The cumulant-generating function of V is

log MV (t) = log Γ(1− t) + log Γ(1 + t). (16)

Let Γ(j)(·) be the jth derivative of Γ(·), for any positive integer j. The next theorem gives the

mathematical expressions of the cumulants for the SLK. The results can be generalized to any

logistically distributed random variable according to the properties of cumulants mentioned above.

Theorem 4. Define

ψ(u) =
d log Γ(u)

du
=

Γ(1)(u)
Γ(u)

, (17)

and let ψ(j)(·) be the jth derivative of ψ(·) for any positive integer j. Then the jth cumulant of a

standard logistic random variable V is found to be

κj,V =





0 if j is odd

2 · ψ(j−1)(1) if j is even

. (18)

For any j ≥ 1 the value of ψ(j−1)(1) is given by

ψ(j−1)(1) = (−1)j(j − 1)! ζ(j), and

ψ(1) = Γ(1)(1) = −0.5772,
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where ζ(·) is the Riemann zeta function. These numbers have been tabulated by Abramowitz

and Stegun (1972), and the first six values of ζ(j) are ζ(1) = ∞, ζ(2) = π2/6, ζ(3) ≈ 1.2021,

ζ(4) = π4/90, ζ(5) ≈ 1.0369, and ζ(6) = π6/945. For example, we obtain

E(V ) = Γ(1)(1)− Γ(1)(1) = 0, and

Var(V ) = 2 · ψ(1)(1) = π2/3

since ψ(1)(1) = π2/6.

The continuization of the discrete r and s into continuous PDFs of X(hX) and Y (hY ) requires

the selection of bandwidths. Take X(hX) for example. The optimal bandwidth is defined by von

Davier et al. (2004) as the minimizer of the penalty function comprising two components. One is

the least square term

PEN1(hX) =
∑

j

(
r̂j − f̂hX

(xj)
)2

. (19)

The other is the smoothness penalty term that avoids rapid fluctuations in the approximating

density,

PEN2(hX) =
∑

j

Aj(1−Bj), (20)

where

Aj =





1 if f
(1)
hX

(x) < 0 at x = xj − 0.25

0 otherwise
, (21)

Bj =





0 if f
(1)
hX

(x) > 0 at x = xj + 0.25

1 otherwise
, (22)

and f
(1)
hX

(x), the first derivative of fhX
(x), is defined as

f
(1)
hX

(x) =
1
s

∑

j

rj · h(RjX) · [1− 2H(RjX)] ·
(

1
aXhX

)2

. (23)

Choices of hX that allow a U-shaped fhX
(x) around the score value xj would result in a penalty

of 1. Combining PEN1 and PEN2 gives the complete penalty function

PEN = PEN1 + PEN2, (24)

which will keep the discrete distribution r and the continuized density fhX
(x) close to each other,

while preventing fhX
(x) from having too many zero derivatives.
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Case 2: Uniform Kernel Function

Suppose V is a uniform random variable with PDF

h(v) =





1
2b

for − b < v < b

0 otherwise

, (25)

where b is a positive real number. The corresponding CDF is

H(v) =





0 for v < −b

v + b

2b
for − b ≤ v < b

1 for v ≥ b

. (26)

V has mean zero and variance b2/3. Moreover, V is independent of X and Y . To see how V

affects our kernel equating process, two cases are examined: V is said to follow the standard

uniform (SU) distribution if b = 1/2. Its variance is σ2
V = 1/12. When V is rescaled to have

identity variance (i.e., b =
√

3), the resulting distribution is called rescaled uniform (RU) here. SU

and RU will be incorporated in the procedure of continuization and these methods will be denoted

as SUK and RUK, respectively. Without specification, UK will stand for the uniform kernel.

The following theorem gives the CDF and PDF of X(hX) when the uniform kernel is applied to

Equations 5 and 7. Note that linear interpolation as it is achieved in existing equating practice

does not involve rescaling, which leads to a continuous distribution that does not preserve the

variance of the original discrete distribution.

Theorem 5. If X(hX) is defined as in Equation 5 with V following a uniform distribution, its

CDF is given by

FhX
(x) =

∑
j :

RjX(x)≥b

rj +
∑
j :

−b≤RjX(x)≤b

{
rj · RjX(x) + b

2b

}
, (27)

where RjX(x) is defined in Equation 9. In addition, the corresponding PDF is

fhX
(x) =

1
aXhX

∑
j :

−b≤RjX(x)≤b

(
rj

2b

)
. (28)
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Following the previous notation, κj,V is the jth cumulant of V . Kupperman (1952) showed

that all odd cumulants vanish and even cumulants are given by

κj,V =
(2b)j ·Bj

j
for even number j, (29)

where {Bj} are Bernoulli numbers. The first eleven Bernoulli numbers are B0 = 1, B1 = −1/2,

B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 = 5/66, and B3 = B5 = B7 = B9 = 0.

As mentioned before, the degree of smoothness also relies on the choice of bandwidth. Similar

to the case of LK, the optimal bandwidth minimizes the same penalty function given in Equation

24 with f
(1)
hX

(x) = 0 for all x satisfying RjX(x) 6= ±b, j = 1, . . . , J since fhX
(x) is piecewise

constant.

Examination of the Continuized Score Distributions

The next theorem provides the relationship between the cumulants of the discrete score

distributions and those of the corresponding continuized approximations.

Theorem 6. Let κj(hX) denote the jth cumulant of X(hX), κj,X denote the jth cumulant of X,

and κj,V denote the jth cumulant of V . Then for j ≥ 3,

κj(hX) = (aX)j ·
(

κj,X + (hX)j · κj,V

)
. (30)

As mentioned before, GK has κj,V = 0 for all j ≥ 3, so κj(hX) must be smaller than κj,X in

magnitude for all j larger than 2. Meanwhile, LK has positive κj,V for all even j greater than 3,

which makes it possible that the latter could produce a better continuous approximation to X in

terms of the cumulant when X also has positive even cumulants.

Equating

Once the KE continuized versions of F (x) and G(y), FhX
(x; r̂) and GhY

(y; ŝ), are in hand,

the equating function defined in Equation 4 that transforms X to Y can be applied to X(hX) and

Y (hY ),

êY (x) = eY (x; r̂, ŝ) = G−1
hY

(FhX
(x; r̂); ŝ). (31)

Similarly, the equating function converting Y to X is given by

êX(y) = eX(y; r̂, ŝ) = F−1
hX

(GhY
(y; ŝ); r̂). (32)
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Evaluating êY (x) and êX(y) at the possible raw-score values would give the equated scores

from X to Y and those from Y to X, respectively. No matter how well the discrete CDFs

are approximated by their continuized versions, the problem of concern is whether or not the

distribution of the equated scores is similar to the target distribution (i.e., if X is transformed to

Y , then Y is the target distribution). To diagnose the effectiveness of the transformation, the

moments of Y and those of eY (X) are compared. Denote the pth moment of Y and that of eY (X)

as µp(Y ) =
∑

k(yk)p · sk and µp(eY (X)) =
∑

j(eY (xj))p · rj . The percent relative error (PRE) in

the pth moment from X to Y is defined as

PRE(p) = 100 · µp(eY (X))− µp(Y )
µp(Y )

(33)

(von Davier et al., 2004). The PRE(p) from Y to X can be calculated in the same way.

Statistical Accuracy

Estimated equating functions are sample estimates of population quantities and therefore

subject to sampling variability. The uncertainty can be measured by the SEE, the standard

deviation of the asymptotic distribution of êY (x) if we are equating X to Y , or

SEEY (x) =
√

Var(êY (x)) (34)

(von Davier et al., 2004). A standard way to evaluate this quantity is through use of the delta

method. Because the score probabilities r and s are estimated independently by their MLEs, r̂

and ŝ, the asymptotic distribution of the estimates can be precisely determined, which facilitates

the use of the delta method. Recall that the C-matrices are assumed to exist and satisfy Equation

3, so the variance-covariance matrix of (r̂, ŝ) jointly for the EG design can be written as

Cov


 r̂

ŝ


 =




CrC
T
r 0

0 CsC
T
s


 = CCT (35)

with

C =




Cr 0

0 Cs


 . (36)

Furthermore, the asymptotic distribution of the MLEs are known to be

 r̂

ŝ


 ∼ N





 r

s


 , CCT


 . (37)
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Then for each x, the estimated equating function given by Equation 31 is also approximately

normally distributed,

eY (x; r̂, ŝ) ∼ N(eY (x; r, s), JeY CCT JT
eY

), (38)

where JeY is the 1× (J + K) Jacobian vector,

JeY =
(

∂eY

∂r
,

∂eY

∂s

)
=

(
∂eY

∂r1
, · · · ,

∂eY

∂rJ
,

∂eY

∂s1
, · · · ,

∂eY

∂sK

)
. (39)

As a result,

SEEY (x) = ‖ĴeY C‖, (40)

where ‖v‖ =
√∑

j v2
j denotes the Euclidian norm of the vector v.

Note that the main difference between the formulas described for the GK in von Davier

et al. (2004) and the formulas below is in the expression of the Jacobians, which reflects the

difference in the type of kernel function that was used in the continuization. When the score

distributions have been approximated by sufficiently smoothed continuized CDFs, the derivatives

of the equating functions can be computed,

∂eY

∂rj
=

1
G(1)

· ∂FhX
(x; r)

∂rj
, (41)

∂eY

∂sk
= − 1

G(1)
· ∂GhY

(eY (x); s)
∂sk

, with (42)

G(1) =
∂GhY

(y; s)
∂y

evaluated at y = eY (x). (43)

Because the partial derivatives of FhX
(x; r) with respect to components of r = {rj , 1 ≤ j ≤ J} are

needed in the calculation of SEE, some calculus will lead to the result

∂FhX
(x; r)

∂rj
= H(RjX)−MjX(x; r) · fhX

(x), (44)

where

MjX(x; r) =
1
2
(x− µX)(1− a2

X)
(

xj − µX

σX

)2

+ (1− aX)xj , (45)

H(RjX) is the CDF of LK or UK evaluated at RjX , and fhX
(x) is the continuized PDF.

To compare two equating functions that depend on the same parameters, their difference,

R(x), can be evaluated, along with the SEED that provides guidelines for statistical significance

13



(as shown in von Davier et al., 2004). Suppose ê1(x) and ê2(x) are the two equating functions of

interest and both convert X to Y , resulting from the use of two different kernel functions. Then

R(x) = ê1(x)− ê2(x) (46)

and

SEEDY (x) =
√

Var(ê1(x)− ê2(x)) = ‖(Ĵe1 − Ĵe2)C‖. (47)

Equating Results

The data we will be using are results from two 20-item mathematics tests given in von Davier

et al. (2004). The tests, both number-right scored tests, were administered independently to

two samples from a national population of examinees. The two sample sizes are N = 1, 453 and

M = 1, 455. The observed sample proportions are shown in Figure 1.

Presmoothing

As mentioned before, the score probabilities for the population are estimated by fitting

loglinear models that have power moments of the sample proportions for their sufficient statistics.

The moments preserved in the final models are the first two and three for X and Y , respectively.

That is, the mean and variance of the X distribution and the mean, variance, and skewness of the

Y distribution are preserved. The fit of the models is examined by the likelihood ratio tests and

the Freeman-Tukey residuals, and the results show no evidence of lack of fit. See von Davier et

al. (2004) for more details about the score probability estimation. The fitted score probabilities, r̂

and ŝ, are shown in Figure 1 as well.

Continuization

The optimal bandwidths using SLK, RLK, SUK, and RUK are listed in Table 1. Results for

GK are shown as reference. It is clear that the ratio of the optimal bandwidths for the same

distribution with different scale parameters (i.e., s in LK and b in UK) reflects exactly their

scale difference. For example, the optimal hX for SLK and that for RLK are 0.5117 and 0.9280,

respectively; their ratio is 0.5117/0.9280 ≈ √
3/π, which is equal to the inverse of the ratio of the

corresponding scale parameters. In general, if two kernel functions are from the same family of

distributions, both have zero mean, and their standard deviations are σ1 and σ2, respectively.
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Figure 1. Observed sample proportions and fitted score probabilities of X and Y .
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Table 1
Optimal Bandwidths for Standard Logistic Kernel (SLK),
Rescaled Logistic Kernel (RLK), Standard Uniform Kernel (SUK),
Rescaled Uniform Kernel (RUK), and Gaussian Kernel (GK)

SLK RLK SUK RUK GK
hX 0.5117 0.9280 1.0029 0.2895 0.6223
hY 0.4462 0.8094 1.0027 0.2895 0.5706
aX 0.9715 0.9715 0.9971 0.9971 0.9869
aY 0.9795 0.9795 0.9973 0.9973 0.9896

Then their corresponding optimal bandwidths, h1 and h2, for test X or test Y, satisfy the following

equality:

σ1h1 = σ2h2. (48)

In addition, they have identical aX and aY values, and, therefore, their resulting continuized score

distributions are identical.

When RLK, RUK, and GK are applied, all kernel functions have zero mean and unit variance,

so the difference in their optimal bandwidths is purely due to the distribution characteristics of

the kernel functions. The kurtosis of a distribution says how heavy its tails are; the larger the

kurtosis the heavier the tails. It is known that the kurtoses of the logistic distribution, uniform

distribution, and normal distribution are 1.2, -1.2, and 0, respectively. Table 1 indicates that the

heavier the tails of the kernel function, the smaller the resulting aX and aY .

Figure 2 shows the continuized PDFs and CDFs for LK, UK, and GK. The graph in the left

panel indicates that the continuized PDFs for LK and GK are smooth functions, and it is hard

to distinguish between these two curves. The continuized PDF for UK is now piecewise constant.

The right panel only presents part of the continuized CDFs within the range of -1 to 1.5 because

the difference between curves may not easily be seen when graphed against the whole score range.

Apparently, the tail of LK is heavier than that of GK, which corresponds to the fact that the

logistic distribution has heavier tails than the normal distribution. The use of UK results in a

piecewise linear CDF, which is how linear interpolation functions in the percentile-rank method. It

is clear that the distribution characteristics of kernel functions are inherited by the corresponding

continuous approximations.

Numerically, it is easier to calculate the moments of a distribution than its cumulants. Because

of the close relationship between the moment-generating function and the cumulant-generating
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Figure 2. Continuized probability density function (PDF)

and cumulative distribution function (CDF) of X.

Note. GK = Gaussian kernel, LK = logistic kernel, UK = uniform kernel.

function, certain connections can be built between moments and cumulants.

Suppose νj is the jth moment of X(hX). The cumulants are related to the moments by the

following recursion formula (Smith, 1995),

κj(hX) = νj −
j−1∑

n=1


 j − 1

n− 1


κn(hX) · νj−n (49)
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Table 2
Cumulants for Logistic Kernel (LK), Uniform Kernel (UK),
and Gaussian Kernel (GK), With Optimal Bandwidths

Order Discrete LK UK GK
F (X) 1 10.82 10.82 10.82 10.82

2 14.48 14.48 14.48 14.48
3 -3.57 -3.28 -3.56 -3.44
4 -63.16 -55.49 -63.10 -59.91
5 23.17 20.06 22.81 21.71
6 510.69 432.12 501.86 471.77

G(Y ) 1 11.59 11.59 11.59 11.59
2 15.48 15.48 15.48 15.48
3 -3.82 -3.59 -3.79 -3.70
4 -102.49 -93.87 -101.36 -98.31
5 -102.55 -92.47 -101.94 -97.17
6 3,539.4 3,127.0 3,493.8 3,325.0

with 
 j

n


 =

j!
n! (j − n)!

. (50)

In this paper, the first six cumulants of X(hX) were computed, using SLK, RLK, SUK, RUK,

and GK. We first estimated {νj}’s by definition,

ν̂j =
∫ ∞

−∞
(x− µX)j dF̂hX

(x), (51)

and then converted them to κj(hX) via the recursion formula given in Equation 49. The results

summarized in Table 2 agree perfectly with the mathematical findings in Equation 30 for LK

and UK and in Equation 15 for GK. Moreover, the scale difference in the same family of kernel

function does not influence the cumulants. The value of (hX)j · κj,V in Equation 30 is so small

for j > 2 for both LK and UK that κj(hX) ≈ (aX)j · κjX . As a result, when the same order of

cumulants are compared in absolute value, UK has the largest one (for orders higher than 2) while

LK has the smallest one, depending on the corresponding aX or aY value.

The cumulants for the three kernel functions with fixed bandwidths were also compared, and

the results are summarized in Table 3. For each kernel function, cumulants were computed for

small hX (hX = 0.2895), median hX (hX = 0.6223), and large hX (hX = 0.9280). Each hX is

optimal for a certain kernel function; aX is fixed once hX is fixed at certain value. From Equation

30, the difference in κj(hX)’s is due to different κj,V ’s for fixed hX . The odd cumulants for all
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Table 3
Cumulants for Logistic Kernel (LK), Uniform Kernel (UK),
and Gaussian Kernel (GK), X to Y , With Fixed Bandwidth

Order Discrete LK UK GK
hX = 0.2895

3 -3.57 -3.54 -3.56 -3.54
4 -63.16 -62.42 -63.10 -62.43
5 23.17 22.83 22.81 22.83
6 510.69 501.88 501.86 501.85

hX = 0.6223
3 -3.57 -3.44 -3.44 -3.44
4 -63.16 -59.74 -60.09 -59.91
5 23.17 21.70 21.75 21.71
6 510.69 472.19 471.72 471.77

hX = 0.9280
3 -3.57 -3.28 -3.27 -3.28
4 -63.16 -55.49 -57.13 -56.27
5 23.17 20.06 20.06 20.05
6 510.69 432.12 431.89 429.45

Note. Boldface indicates cumulants of a certain
kernel function with its optimal bandwidth.

three kernel functions are 0, so numerically κj(hX) for odd integer j should be almost identical

for a fixed hX . It is clear that, the larger the hX , the more the cumulants of the continuized

distributions deviate from the fitted discrete score distributions. However, the cumulants do not

vary much for different kernel functions with a fixed bandwidth. LK does not outperform GK in

terms of cumulants under respective optimal bandwidths. UK performs best here since its optimal

bandwidth is the smallest.

Equating

Test X and test Y are equated as in Equation 31 using LK, UK, and GK under corresponding

optimal bandwidths. The equated scores are shown in Table 4. They are very close for all three

kernel functions, except for the following two situations: the equated y score when x = 20 in test

X, and the equated x score when y = 0 in test Y. The explanation is that the UK has finite range

while the LK and GK do not, so the equated scores could be quite different when they are close

to the boundaries of the continuized distributions of UK. The PREs defined in Equation 33 are

computed for the first 10 moments, and the results are summarized in Table 5.

19



Table 4
Equated Scores for Logistic Kernel (LK), Uniform Kernel (UK),
and Gaussian Kernel (GK)

X to Y Y to X
Score LK UK GK LK UK GK

0 0.4474 0.4392 0.3937 -0.4125 -0.2268 -0.3216
1 1.5732 1.6387 1.5813 0.4857 0.5565 0.4965
2 2.6285 2.6783 2.6404 1.3958 1.4289 1.3862
3 3.6353 3.6762 3.6443 2.3653 2.3888 2.3558
4 4.6253 4.6604 4.6316 3.3673 3.3917 3.3604
5 5.6137 5.6434 5.6177 4.3793 4.4052 4.3749
6 6.6079 6.6313 6.6100 5.3894 5.4151 5.3870
7 7.6116 7.6280 7.6120 6.3918 6.4151 6.3912
8 8.6269 8.6361 8.6260 7.3840 7.4030 7.3847
9 9.6549 9.6576 9.6530 8.3646 8.3785 8.3662
10 10.6960 10.6937 10.6935 9.3332 9.3423 9.3354
11 11.7497 11.7448 11.7471 10.2902 10.2954 10.2925
12 12.8147 12.8097 12.8126 11.2364 11.2390 11.2386
13 13.8879 13.8849 13.8869 12.1736 12.1748 12.1752
14 14.9633 14.9638 14.9641 13.1046 13.1051 13.1052
15 16.0306 16.0349 16.0339 14.0343 14.0334 14.0334
16 17.0717 17.0805 17.0781 14.9710 14.9669 14.9680
17 18.0578 18.0729 18.0677 15.9297 15.9197 15.9236
18 18.9520 18.9702 18.9607 16.9389 16.9216 16.9288
19 19.7339 19.7072 19.7183 18.0578 18.0356 18.0477
20 20.4613 20.2781 20.3930 19.3692 19.3993 19.4153

Statistical Accuracy

The C-matrices are obtained in the presmoothing step so that they are not affected by the

choice of kernel. Let JeLK denote the Jacobian vector of the equating function that equates X

to Y using LK, JeUK denote the Jacobian vector of UK, and JeGK denote the Jacobian vector

of GK. Their SEEs are given by Equation 40 with ĴeY = JeLK , ĴeY = JeUK , and ĴeY = JeGK ,

respectively; the results are shown in the left panel of Figure 3. The SEEs for equating functions

that transform Y to X can be computed analogously, as illustrated in the right panel of Figure 3.

These graphs reveal that the SEEs for LK and GK differ only a bit at extreme scores and that

their curves have similar shape. However, the SEEs for UK do not exhibit the same pattern. In

addition, they have greater variations from test to test.

In Figure 4 the difference R(x) between two estimated equating functions is plotted,

converting X to Y , R(x) = êLK(x)− êGK(x) for the left panel and R(x) = êUK(x)− êGK(x) for
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Table 5
Percent Relative Errors (PREs) for Logistic Kernel (LK), Uniform
Kernel (UK), and Gaussian Kernel (GK)

X to Y Y to X
Moments LK UK GK LK UK GK

1 0.0073 0.0467 0.0059 -0.0094 0.0553 -0.0063
2 0.0186 0.0353 0.0122 -0.0314 0.0212 -0.0228
3 0.0344 0.0099 0.0220 -0.0718 -0.0528 -0.0550
4 0.0611 -0.0175 0.0398 -0.1446 -0.1661 -0.1139
5 0.1100 -0.0402 0.0729 -0.2691 -0.3277 -0.2135
6 0.1911 -0.0550 0.1276 -0.4628 -0.5487 -0.3665
7 0.3130 -0.0600 0.2091 -0.7398 -0.8391 -0.5838
8 0.4818 -0.0539 0.3213 -1.1104 -1.2065 -0.8739
9 0.7022 -0.0358 0.4672 -1.5811 -1.6561 -1.2426
10 0.9773 -0.0052 0.6489 -2.1548 -2.1902 -1.6934

the right panel. Two curves representing ±2 times of the SEEDY (x) are also provided as the

upper and lower bounds of the 95% confidence interval. For the comparison between LK and GK,

R(0) and R(20) are significantly different at level 0.05 since they are out of bounds, but the scale

of SEED is so small (less than 0.1 raw-score point) that the difference may still be negligible in

practice. The absolute values of R(x) and SEEDY (x) increase as x approaches its boundaries (0

and 20) because the continuized CDFs for LK differ the most from the continuized CDFs for GK

at both tails. The right panel in Figure 4 shows that the difference between êUK(x) and êGK(x) is

much larger than that of êLK(x) and êGK(x) for all score values except for median score values.

The difference is nonsignificant at level 0.05, however, since the corresponding SEEDs are larger

in scale.

The KE function closely approximates the standard linear equating function when the

bandwidths hX and hY are both large. Here we computed the eLlin(x) and eUlin(x) for LK

and UK by choosing hX = hY = 20 in Equation 31. The difference between the LK (UK)

estimated equating function and the LK (UK) estimated linear equating function is defined as

R(x) = eLK(x) − eLlin(x) (R(x) = eUK(x) − eUlin(x)), and the SEED is given by Equation 47.

Figure 5 exhibits the values of R(x) for LK and UK at each possible score along with their 95%

confidence intervals, indicating the two equating functions are useful alternatives for all scores

except for the highest two values, x = 19, 20.
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Figure 3. Standard errors of equating (SEEs) for logistic kernel (LK),

uniform kernel (UK), and Gaussian kernel (GK).

Conclusions

In this paper we introduce two new equating models within the KE framework, namely,

LK and UK. The choice of LK was motivated by the criticism of GK that its use might lead

to a continuous distribution that does not preserve the higher moments of the original discrete

distribution. The choice of UK was motivated by its similarity to the linear interpolation that

is widely used in practice. It is worth noting that in this paper we improved upon the linear

interpolation by rescaling it such that the continuous distribution preserves the mean and the
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Figure 4. Standard errors of equating differences (SEEDs) between

logistic kernel (LK) and Gaussian kernel (GK), uniform kernel (UK)

and Gaussian kernel (GK), from X to Y .

variance of the discrete distribution.

This study suggests that the three kernels (with the various versions due to rescaling) provide

very similar equating results and that despite the criticism, GK does well in preserving the higher

order cumulants, the PRE, and the level of accuracy. The main differences between the three

kernels seem to be their out-of-range characteristics (i.e., GK and LK have strictly positive density

on the whole real line, but UK does not).
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Figure 5. Standard errors of equating differences (SEEDs)

between logistic kernel (LK) and uniform kernel (UK),

compared with linear equating functions, from X to Y .

The main limitation of this study lies in its data example. In some future research, to stay

in the KE framework these methods should be applied to distributions that have shapes that

depart significantly from the normal distributions (more pronounced skewness and kurtosis, as

well as other characteristics). Other smoothing techniques such as spline smoothing could be

adopted in the continuization step. The presmoothing step and the continuization step could also

be combined before two tests with discrete score distributions are equated (e.g., Wang, 2007).
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In addition, note that UK (and in consequence, linear interpolation) is not differentiable

at the score points, which leads to some problems in estimating the SEE. Technically, the

continuized functions are still differentiable on the score space except on some finite points with

total probability of zero. This means that this requirement of the delta method is actually met in

this situation. Future simulation studies could shed more light on this statement.
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